液力偶合器的主要构造是怎样的?
液力偶合器主要由泵轮、涡轮和转动外壳(又叫旋转内套)组成。它们形成了两个腔室:在泵轮与涡轮间的腔室(即工作腔)中有工作油所形成的循环流动圆;另有由泵轮和涡轮的径向间隙(也有在涡壳上开几个小孔的)流入涡轮与转动外壳腔室(即副油腔)中的工作油。一般泵轮和涡轮内装有20~40片径向辐射形叶片,副油腔壁上亦装有叶片或开有油孔、凹槽。
液力耦合器的工作原理是什么?
液力耦合器的模型与工作原理
液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。液力耦合器的功控调速原理与效率
根据液力耦合器的上述特点,可以等效为图1所示的模型
功率控制调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。因此,我们不能简单地认为液力偶合器调速是"丢转",而实际是丢功率。设原传动功率为PM1,输出功率为PM2,损耗功率则为
液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越大,特别是恒转矩负载,由于原传动输入功率不变,损耗功率将转速损失成比例增大。对于风机泵类负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率降低,损耗功率相对小一些,但输出功率是按转速的立方率减小,调速效率仍然很低。液力耦合器的调速效率曲线如图2所示,平均效率在50%左右。
液力耦合器的模型与工作原理
液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。液力耦合器的功控调速原理与效率
根据液力耦合器的上述特点,可以等效为图1所示的模型
功率控制调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。因此,我们不能简单地认为液力偶合器调速是"丢转",而实际是丢功率。设原传动功率为PM1,输出功
使用液力偶合器时应注意什么事项?应怎样维护与使用?
低温区工作油使用注意事项
液力偶合器是靠泵轮与涡轮间的腔室中的工作油来传递动力,所以在一些环境恶劣的地区,特别要主要工作油的使用。
现在我们以我国北方高寒地区为例,我国北方高寒地区油田抽油机或滑雪场牵引车上使用的液力偶合器,大都是在露天使用,要求在-40℅的恶劣环境下仍能正常运转。而普通的L-TSA32汽轮机油切点只达-7℅,6号液力传动油的疑点为-30℅,8号液力传动油的凝点为-35℅。均无法在高寒地区使用。
只有0/SYRH2042-2001标准中8D号液力传动油的凝点达-50℅,可在高寒地区露天使用。
资料来源于广州液力传动设备有限公司(www。ohqchina。com)
工业电机用液力偶合器
液力偶合器对电机有保护作用,可是怎么起到保护的呢?液力偶合器应该怎么去选,什么样的电机需要用液力偶合器,是根据功率吗?可前几天,我寻过一个风机厂,G4-73-11NO。25D电机功率625KW,电机电压380V,说不用带液力偶合器,可另一风机G4-73-11NO。28D电机功率630KW,电机电压10KV,可这个需要带液力偶合器。对比这两个电机功率,差不多只是电压有点区别,可为什么一个要带液力偶合器,一个不用带呢,
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。一般液力耦合器正常工况的转速比在0。95以上时可获得较高的效率。液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。
那么大的功率还是选高压的吧。
风机有条件还是做变频。
液力耦合器的作用
以液体为工作介质的一种非刚性联轴器,又称液力联轴器。液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。最后液体返回泵轮,形成周而复始的流动。液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。一般液力耦合器正常工况的转速比在0。95以上时可获得较高的效率。液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。
简述液力偶合器的调速原理.
调速型液力偶合器的工作原理:
调速液力偶合器是以液体为介质传递动力并实现无级调速的液力传动装置,液力偶合器主要由与输入轴相联的泵轮,与输出轴联接的涡轮以及把涡轮包容在其中的转动外壳组成。在调速型液力偶合器密封的空腔中充满工作油,泵轮和涡轮对称布置,它们的流道几何形状相同。工作轮叶片为经向布置的直叶片,当原动机驱动泵轮旋转时,工作油在泵轮叶片的作用下由叶片内侧向外缘流动,形成离心水泵出口处的高速高压液流,该液流进入涡轮,冲击涡轮叶片,带动涡轮与泵轮同向旋转,工作油在涡轮中由外缘向内侧流动过程中减速减压,然后再流回泵轮进口,这里传递能量的介质是工作油,泵轮的作用就是把原动机的机械能传给被驱动机械。(图3)所示为偶合器中流体流动情况示意图。
调速液力偶合器中液体流动情况示意图
改变液力偶合器工作腔中工作油的充满度就可在输入轴转速不变的情况下无级地改变输出轴的转速,调速原理如(图4)所示。当导流管管口处于靠近旋转轴线位置时(即把导流管拉出)偶合器工作腔中的油环最厚,即工作腔中工作油充满度最大,此时输出轴转速最高,当导流管管口处于远离旋转轴线位置时(即把导流管插进),油环最薄。即工作腔中工作油充满度最小,此时输出轴转速最低。该偶合器是采用电动执行器作为执行元件来拉动导流管实现无级调速的。
调速液力偶合器液力调速原理图
液力偶合器是以液体(透平油)为工作介质,利用液体动能的变化来传递能量的叶片式传动机械。原动机转动泵轮带动工作液体旋转,输入能量,对液体作功,使液体获得很大的旋转动能,井同时作轴面运动,流入涡轮,对涡轮作功,推动涡轮运动,将能量转换成为涡轮轴的旋转动能)并且通过控制液体量的多少来调整旋转动能的大小,从而改变液体偶合器的输出转速。
液力偶合器的作用
液力偶合器(fluid
coupling)
以液体油作为工作介质通过泵轮将液体的动能转变为机械能连接电动机与工作机械实现动力的传递。
它具有空载启动电机,平稳无级变速等特点,用于电站给水泵的转速调节,可简化锅炉给水调节系统,减少高压阀门数量,由于可通过调速改变给水量和压力来适应机组的起停和负荷变化,调节特性好,调节阀前后压降小,管路损失小,不易损坏,使给水系统故障减少,当给水泵发生卡涩、咬死等情况时,对泵和电机都可起到保护作用。故现代电站中,机组锅炉给水泵普遍采用了带液力偶会器的调速给水泵。
主要部件有:泵轮、涡轮、转动外壳、、输入轴、输出轴及勺管。通常,转动外壳与泵轮是在外缘用法兰用螺栓联接。
泵轮与涡轮称为工作轮,两轮中均有叶片,两轮分别与输入、输出轴相联接,它们之间是有间隙的,泵轮和涡轮均有径向尺寸相同的腔形,所以,合在一起形成工作油腔室,工作油从泵轮内侧进入,并跟随动力机一起作旋转运动,油在离心力的作用下,被甩到泵轮的外侧,形成高速油流冲向对面的涡轮叶片,流向涡轮内侧逐步减速并流回到泵轮的内侧,构成了一个油的循环。工作液体在工作腔中的绝对流动是一个三维运动。转动外壳与泵轮联接后包围在涡轮之外,使工作液体能贮于泵轮之中。输入轴与动力机相联(如电机),输出轴与被驱动机相联(如水泵)。
液力偶合器的特点是:能消除冲击和振动;输出转速低於输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。液力偶合器的传动效率等於输出轴转速与输入轴转速之比。一般液力偶合器正常工况的转速比在0。95以上时可获得较高的效率。液力偶合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。它一般靠壳体自然散热,不需要外部冷却的供应。液力偶合器传动的过程可以看作合力的过程。
也就是无级变速器,装载机,挖掘机,都是液力传动。
汽车上的液力偶合器是什么东西,有什么作用呀
是自动变速器车子上面才有的东西,作用相当于手动变速器的离合器!
液压离合就是用液压来取代原来的拉线结构来分离离合器的压盘!使飞轮与变速箱输入轴分离!进行换档操作!当你松开脚踏板时,液压自动弹回将飞轮与变速箱结合!现在的新车大多都采用了液压离合!和刹车是一样的!有一个液压泵!
液力偶合器的工作原理?
液力偶合器的实质是离心泵与涡轮机的组合。主要由输入轴、输出轴、泵轮、涡轮、外亮、辅室及安全保护装置等构成。输入轴一端与动力机相连,另一端与泵鸵相连:输出轴一端与涡轮相连,另一端与工作机相连。泵轮与涡轮对称布置,轮内布置一定数量的叶片。外亮与泵轮固联成密封腔,腔内充填工作液体以传递动力;当原动机通过输入轴带动泵轮旋转时,充填在工作腔内的工作液体受离心力和工作轮叶片的作用由半径较小的泵轮入口被加速加压抛向半径较大的泵轮出口,同时液体的动量矩产生增量,即偶合器泵轮将输入的机械能转化成了液体动能:当携带液体动能的工作液体由泵轮出口冲向对面的涡轮时,液流便沿涡鸵叶片所形成的流道做向心流动,同时释放液体动能转化成机械能驱动涡轮旋转并带动负载做功。就这样工作液体在工作腔内周而复始地做螺旋环流运动,于是输出与输入在没有任何直接机械联接的情况下,仅靠液体动能便柔性地联接在一起了。
液力耦合器是什么来的?它怎么工作?
主要用于启动调速节能,大型液力耦合器用于电机的启动,由于液力耦合器本身的技术缺陷,现在多用变频调速技术代替。
a。采用液力耦合器时,在低速向高速运行过程中,延迟性较明显,不能快速相应,同时这时候的电流较大,如整定不好会引起跳闸,影响系统稳定性。
b。液力耦合器本身控制精度差,调速范围窄,通常在40%~90%之间;
c。电机启动时,冲击电流较大,影响电网的稳定性。
d。在高速运行时,液力耦合器有丢转现象,严重时会影响工作的正常进行。
e。液力耦合在调速运行时产生机械损耗和转差损耗,效率较低,造成电能浪费。
f。液力耦合器工作时是通过一导管调整工作腔的充液量,从而改变传递扭矩和输出转速来满足工况要求;因此,对工作腔及供油系统需经常维护及检修。液力耦合器经过一段时间使用,其维护费用较高,
g。液力耦合器故障时,无法再用其它方式使其拖动的风机运行,必须停机检修。
h。耦合器运行时间稍长,会漏油严重。
液力耦合器是以液体为工作介质的一种非刚性联轴器,又称液力联轴器。液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。最后液体返回泵轮,形成周而复始的流动。液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。一般液力耦合器正常工况的转速比在0。95以上时可获得较高的效率。液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。
发表评论
发表评论: